

Analysis and Quantification of Short Chain Fatty Acids with Airsense Analyzer

A. Aranyos¹, E. Pinteaux¹, S. Morel¹, C. Leidlmair², A. Genuin, S. Praun² ¹Alpha MOS France, ²V&F Analyse – und Messetechnik GmbH, Austria

Amongst other volatiles that are formed during industrial fermentation processes, the short chain fatty acids (SCFA) are important products to investigate as they significantly impact the quality of the ferment and the organoleptic properties. This study demonstrates how we can use on-line, ion molecule reaction mass spectrometry for detection and quantification of these compounds in ferment medium

Materials & Methods		Results & Discussion			
Samples		Molecule	Formula	MW (g/mol)	lon energy (eV)
Known concentrations of various SCFA were used to develop a detection and quantification model. For validation, mixtures were prepared out of the		Acetic acid	C2H4O2	60.05	10.65
		propionic acid	C3H6O2	74.08	10.44
		butyric acid	C4H8O2	88.10	10.17
calibration solutions.	Isobutyric acid	C4H8O2	88.10	10.24	
		isovaleric acid	C5H10O2	102.13	10.51
Media Composition	Acids Ranges	valeric acid	C5H10O2	102.13	10.53
Component Concentration		Gas	Symbol Ion energy		

NaHCO ₃	0.2 g/l
NaCl	4.5 g/l
MgSO4*7H2O	0.5 g/l
CaCl ₂ *2H ₂ O	0.3 g/l
FeSO4*7H2O	0.005 g/l

2.6 g/l

Acetic Acid	0.1g/l - 0.5 g/l - 2.0 g/l
Propionic Acid	0.1g/l - 0.5 g/l - 2.0 g/l
Valeric Acid	0.1g/l - 0.5 g/l - 2.0 g/l
Iso-Valeric Acid	0.1g/l - 0.5 g/l - 2.0 g/l
Butyric Acid	0.1g/l - 0.5 g/l - 2.0 g/l
Iso-Butyric Acid	0.1g/l - 0.5 g/l - 2.0 g/l

Concentrations

Table 1 : Samples

SFCA

Equipment

K2HPO4*3H2O

The analysis was conducted using an Airsense.net multi component analyzer.

Mercury	Hg	10.44
Xenon	Xe	12.13
Kr	Kr	14.00

Results and Discussion

A detailed energy analysis of the 80% fragments indicated that various 70% interfering fragments from the higher 60% acids should be expected on the 50% molecule ions corresponding to the 40% shorter acids (for example: valeric acid will also give a signal on the mass 88). 30% This was confirmed by the analysis of 20% pure compounds, and for each acid the 10% relative mass ratios were recorded for 0% concentration calculations.

Apart from the overlapping fragments another major challenge was to differentiate acids from their isomers. Since the resolution of our measurement is 1 amu, we had to find the significant difference in the signal pattern. For all the acids, the iso form gave relatively lower intensity on the protonated molecule ion.

Valeric acid mass ratios

Table 2: Ionisation energies

Fig. 1: Airsense analyzer and schematics of working principle

Low energy (10 - 14 eV) and highly efficient ionization allows for low level detection of volatiles with minimal fragmentation. After the ionization the analyte ions are separated using a quadrupole mass filter and an electron multiplier. The software interface allows for real-time readouts of the signals. In this study the data for multi-variate regression were exported, however, such results can also be programmed directly into the operating software.

Analytical Conditions

Samples were prepared in 20 ml headspace vials. Headspace was generated in an auto sampler under typical fermentation temperatures (39°C) with a short (20min) equilibration time. The headspace was pumped to the analyzer and the sample pressure was set to 25 mbars. Both Hg (low energy) and Xe (medium energy) ionization modes were used, as acetic acid detection requires higher energy than the other acids. The pH of the solution was kept constant using a buffer solution. Valeric IsoValeric Fig. 3: Example: Differentiation patter between isobaric acids

With this data at hand it was possile to calculate:

- First, the valeric and isovaleric concentrations form M102 / M103
- The butyric and isobutyric concentrations from M88 / M 89 and the now known valeric and isovaleric contributions
- The propionic from M74 and the contributions from the four higher acids
- Finally, the acetic acid from Xe based M60 adjusted for the five other acids

	Acetic		Propionic		Isobutyric	
	Real	Model	Real	Model	Real	Model
Test Mix 1*	0,200	0,200	0,125	0,125	0,188	0,190
Test Mix 2*	0,000	0,000	0,000	0,000	0,000	0,000
Test Mix 3*	0,000	0,000	0,000	0,000	1,330	1,328
	Butyric		IsoValeric		Valeric	
	Real	Model	Real	Model	Real	Model
Test Mix 1*	0,125	0,126	0,188	0,188	0,125	0,125
Test Mix 2*	0,000	0,000	1,330	1,330	0,670	0,670
Test Mix 3*	0,670	0,669	0,000	0,000	0,000	0,000

In this study the feasibility of detecting and quantifying short chain fatty acids in a fermentation medium could be demonstrated. The application is very promising for online analysis and control of industrial fermentation processes.

